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Abstract

A general geometry gyrokinetic model for particle simulation of plasma tur-
bulence in tokamak experiments is described. It incorporates the comprehensive
influence of non-circular cross section, realistic plasma profiles, plasma rotation,
neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting
result of global turbulence development in a shaped tokamak plasma is presented
with regard to nonlinear turbulence spreading into the linearly stable region. The
mutual interaction between turbulence and zonal flows in collisionless plasmas is
studied with a focus on identifying possible nonlinear saturation mechanisms for
zonal flows. A bursting temporal behavior with a period longer than the geodesic
acoustic oscillation period is observed even in a collisionless system. Our simu-
lation results suggest that the zonal flows can drive turbulence. However, this
process is too weak to be an effective zonal flow saturation mechanism.

PACS numbers: 52.35.Ra, 52.65.Tt, 52.65.Rr, 52.55.Fa



I. INTRODUCTION

Understanding turbulence and associated transport in toroidal plasmas! =3

is one of the key is-
sues in magnetic fusion research. In the past decade as computer resources rapidly increased
and advanced numerical algorithms were developed, significant progress was made for this
long-standing complicated issue through computer simulation based on various approaches.* 1
Among them the first-principles based gyrokinetic particle approach!® has been widely em-
ployed. The simulation study carried out by the gyrokinetic toroidal code GTC?® represents
one of the most productive examples. GTC was originally developed to focus on fundamental
nonlinear turbulence physics. It is a full-torus global code using a global field-line-following
mesh and a real space field solver. Global turbulence simulations for toroidal plasmas are
highly demanding for the following reasons: (i) the turbulence-generated zonal flow contains
radial scales as large as the system size, even though the turbulence itself is on the much
smaller scale of the gyroradius; (ii) the equilibrium E x B shear flow, which also plays an
important role in determining turbulence levels, typically has the large scale size of the plasma
minor radius; (iii) turbulence spreading to the linearly stable zone results in nonlocal trans-
port, which is a truly global phenomenon. To pose the simplest problem while keeping the
important global physics properties, a simplified model was utilized in the previous simula-
tions, such as simple magnetic geometry with a large aspect ratio circular concentric cross
section and neglect of the effect of radial variation of pressure. This proved to be an effective
means of gaining key insights into the complexity of the toroidal turbulence system. As a
result, the previous simulation studies have led to a number of important understandings
with regard to zonal flow effects, transport scalings with collisionality and device size, tur-
bulence spreading, etc.®'7~1% While such a simplified model is a useful tool to separate and
clarify fundamental physics issues, more realistic features are needed as the research moves
forward. Particularly for simulating turbulence phenomena in tokamak experiments, a more
comprehensive model is needed which consistently incorporates the influence of general geom-
etry, realistic plasma profiles, plasma flow, neoclassical equilibrium, Coulomb collisions and

other features. In this paper we present such a model with emphasis on the general geometry

capability, which has now been implemented based on GTC architecture. The developed



general geometry simulation is interfaced with TRANSP, a widely used experimental data
analysis software tool for specifying experimental plasma profiles of temperature, density and
toroidal angular velocity, and also with various numerical MHD equilibrium codes, including
the JSOLVER, QSOLVER and ESC codes.

Global turbulence fluctuation levels and associated transport are determined by both lo-
cal and nonlocal physics. Turbulence propagation in the radial direction results in transport
nonlocality which should be addressed by global simulation. The new capability is applied to
shaped plasmas with DITI-D geometry to examine the ion temperature gradient (ITG) turbu-
lence spreading phenomena and the global turbulence evolution process. We also investigate
the nonlinear interplay between turbulence and zonal flow, which is essentially a local process.
As an attempt to understand the nonlinear zonal flow dissipation, which is needed to satu-
rate zonal flow and to explain the mutual self-regulation observed in collisionless simulations,
we study the process of zonal flow driving turbulence. Our simulation results suggest that
the coupling of zonal flows to turbulence and associated energy transfers are much weaker,
compared to the opposite process in ITG turbulence.

The rest of the paper is organized as follows. The general geometry simulation model
is described in Sec. II. We describe the coordinate system and mesh construction, with
the consideration of shaped equilibrium geometry and strong nonuniformity of the global
temperature profile; we detail the calculation of the gyrokinetic transformation of fluctuations
between particle position and guiding center position in generalized geometry; the system of
basic gyrokinetic equations used in this generalized simulation model is also presented. Our
simulation results is presented in Sec. III. These include linear and nonlinear ITG benchmarks
in a simple geometry, global turbulence evolution in a DIII-D-shaped plasma, and turbulence

self-regulation in collisionless plasma. Concluding remarks are summarized in Sec. IV.



II. GENERAL GEOMETRY GYROKINETIC PARTI-
CLE SIMULATION MODEL

A. Coordinate system and mesh construction

Magnetic flux coordinates, in which the radial coordinate labels magnetic surfaces, are gener-
ally used for toroidal systems and associated with MHD equilibria. Our gyrokinetic simulation
in principle can use arbitrary flux coordinates with straight field lines. In the flux coordinates,
the global field-line-following mesh, which possesses the highest efficiency by capturing the
flute-type character of the drift wave turbulence in toroidal plasmas, can be easily constructed.
A preferable flux coordinate can be chosen in terms of different requirements. A symmet-
ric coordinate system in which the toroidal angle ¢ is chosen to be the azimuthal angle of
cylindrical coordinates is preferable in many cases. These coordinates are relatively uniform
compared to others which have been previously used, and advantageous for constructing a
relatively regular mesh in real space for strongly shaped plasmas. It also facilitates straight-
forward visualization with the poloidal plane defined with the physical angle ¢. The radial
coordinate is defined as r = \/m where v and 1), are the toroidal flux and its value on the
plasma boundary, respectively. This same radial coordinate is widely used in the experimental
community.

Because of the flute-type character of drift wave turbulence in toroidal plasmas, with
k) < ki, where kj and k, are the parallel and perpendicular wave numbers, respectively,
GTC uses a field-line-following mesh which shows high efficiency for calculating the turbulent
field. For drift wave turbulence, the spatial scale length in the perpendicular direction is
generally in correlation with the local gyroradius p; oc {/Tj, which may vary substantially
from the core to the edge of the plasma. For instance, it is common in National Spherical
Torus Experiment (NSTX) plasmas that the ion temperature changes from ~ keV in the core
to ~ 10eV near the separatrix region at the plasma edge. Therefore, for a global simulation,
which includes the entire radial domain, it is important to use a nonuniform grid with the
grid size in the perpendicular direction correlated with the local gyroradius for improved

spatial resolution and efficiency. To this end, we re-scale the radial coordinate by defining p



as follows:
dp
— =/T./T;(r), 1
L T 1)

where T, is the temperature at a reference radial location. Working with the new coordinate
p, we use an evenly spaced radial grid, which offers great convenience for frequent operations
such as particle sorting, charge deposition, gathering, etc. This allows the grid size in real
space to be correlated with the local gyroradius: Ar ~ /T;(r)/T.. In the poloidal direction,
the grid size Af(r) is uniform on a flux surface, while varying over different flux surfaces. The
grid size Af(r) is determined so as to make the poloidal arc length Aly near the mid-plane
correlated with p;. An example of such a grid on the toroidal plane ¢ = 0 is shown in Fig.1.
Generally, a two-dimensional mesh on the ¢ = 0 plane is set up first. A three-dimensional
mesh is constructed by following each (approximate) field line, which starts at a grid point
on the ¢ = 0 plane and has §(r)§ — ¢ =constant, with g slightly changed from the usual
safety factor ¢(r) so that the approximate field lines will lead back to one of the grid points
on the ¢ = 0 plane. Two methods for enforcing toroidal periodicity have been implemented.
One method is to map the grid at ( = 0 to the grid at ( = 27 using interpolation, which
results in some spatial damping. Another method is to allow the grid to slightly depart from
the magnetic field lines in order to match the grid points, which requires a chain rule in
calculating the parallel derivatives. With either approach, there is no approximation in the
representation of the toroidal geometry.

The gyrokinetic particles are followed in general flux coordinates using guiding center
Lagrangian equations, instead of Hamiltonian equations that require construction of canonical
variables?? which are complicated forms in general geometry and inconvenient to use. The

guiding center Lagrangian obtained by Littlejohn has the following normalized form??%

L(x,x%x;t) = (A+p||B) -v—H, (2)

with the guiding center Hamiltonian H = pﬁB2 /2 + uB + ®. Here, the magnetic field B =
V x A, p| = v /B is the parallel gyroradius, x is the magnetic moment, and @ is the electric
potential. The independent variables are x = (7,6, ¢, p). The particle guiding drift motion



is governed by the Lagrangian equations

d (0 d
dt (aﬁ) h GxiL =0 3)

The obtained equations for dx/dt are suitable for any generalized flux coordinates.

B. Gyrokinetic transformation

16,24-28 i5 concerned with the

One of the important elements of the gyrokinetic formalism
transformation of fluctuations between the particle position Z and the guiding center position
R. The fluctuations, such as the potential ¢ and the ion density dn; in the two coordinates

are connected by the gyrokinetic transformation which is expressed as follows

3R, = 5 [ o(@5(F ~ R~ pdde, (4)
3(&) = 5 [ 6, u) s B )8R ~ 7+ By d, (5)
i) = o [ £, )0(F ~ 7+ p)dFdpdvydo, (6)

where p is the gyroradius vector, © is the gyrophase, fis; is assumed to be Maxwellian and
0 f; is the perturbed ion distribution function. In a gyrokinetic simulation, the quantities
are is calculated either in real space or in Fourier space. In real space the transformation
is carried out by the four-point averaging scheme.? The exact gyro-average is performed
on a gyro-plane perpendicular to the magnetic field with 4 points evenly spaced on a gyro-
orbit. Because the grid points on which fluctuations ¢ and dn; are calculated are set up on
poloidal planes, it is much more convenient to perform the gyro-average on poloidal planes
instead of on gyro-planes. In the case of the simple geometry of large aspect ratio circular
concentric cross section, the difference between a poloidal plane and a gyro-plane is neglected
in doing the gyro-average. An accurate treatment for the gyro-average in general geometry
is obtained by taking into account the finite ratio of the poloidal to the total magnetic field
B, /B, which separates the poloidal plane from the gyro-plane. By projection to the poloidal
plane, a gyro-orbit becomes an elliptic orbit (Fig.2). In the direction of (V¢ x B) x Vo,
the gyroradius is elongated by a factor of 1/cosa while there is no change in the Vo x B



direction. Here, cosa = B - V¢ /B|Vp| = ¢'/TB|Vy|, with ¢ = diy/dr and the Jacobian
J = (Vr x VO -Vp)~' > 0 (right handed). The four points used for the gyro-average are
chosen to be located on the axes (Vi x B) x Vp and Ve x B. An ion spends approximately
the same amount of time on each quarter of the ellipse. To locate the positions of the four
points relative to the guiding center, we first calculate the directional derivatives in the two
directions which are defined as dA/dl = 1- VA for any function A, where 1 is unit vector in

direction 1. In the V¢ x B direction

dr _ [(g"°)" = 9*°g")/a+ 99" — g"*g"°

, (7)

d_ll_ \/g¢¢B2/¢’2—1/j2
o [g*°g" — g**9"]/qa+ g""9" — 979" ®)
dll \/gcpgoBQ/dJIQ _ 1/j2 ’
in the (V¢ x B) x V( direction
dr qg¥
TR ) (9)
de j\/gw\/gcpapBZ/,(/JlQ _ 1/j2
o _ 9% /qa— 9"

dl 7. /q7%\[gee B2 [ — 1/ 7 1o

where the metric tensor ¢® = Va - V3. The four points used for the ion gyro-average are

determined by

Tj:T0+ATj, Hj:00+A0j, QOj:QD(), j:1,2,3,4 (11)
with
dr de dr  p; dg p;
A =+—yp;, Abio=+—p; A =+— , A =+— . 12
"2 dly p 1,2 dly p T34 dly cos a 34 dls cos o (12)

The calculation of the potential q;(a_:') in terms of @(Z) involves the double averaging
process.?’ Following the above method we can extend the previous calculation of qg(f) in
Ref. 30 to general geometry, taking into account finite By/B. The double average is made
along the elliptic orbit projected on the poloidal plane as shown in Fig.3 where ¢ at the center

point is the four-point averages of ¢ on the X points, which are other four-point average of



¢ on the O points. The average over the distribution function is accomplished by carefully
sampling different gyroradii.®

It is noted that the four-point averaging scheme is accurate for £, p; < 2 modes. To
resolve shorter wavelength modes, we may use more points for the averaging process. An
implicit assumption of the 4-point averaging scheme described above is that the equilibrium
scale lengths L, and Lp of the pressure and magnetic field are much larger than the ion

gyroradius, which is consistent with the gyrokinetic ordering.

C. Basic equations

The gyrokinetic particle distribution is expressed as f = fo + df. Here we separate the
turbulence perturbation § f from the equilibrium distribution fy. In the electrostatic limit the
ion gyrokinetic equation for ¢ f; with  and v as independent velocity variables is

00 f;
ot

06 f;
8v||

+ (v)b + v, + Vi 4+ 03) - VO fi — b* - V(uB + E(DO + (15)

dfo
v

Here vg, and vg are the ExB drift velocities corresponding to the equilibrium potential ®; and

= —vp-Vfo+ b* - V( ¢ ¢) + Cl(éf,) (13)

the fluctuation potential ¢ respectively, v is the VB drift velocity, b*=b+ p||13 X (B . Vf))
with b = B/B, and C! is the linearized Coulomb collision operator. Note that a parallel
velocity nonlinearity term which is one order higher?* is retained in the equation. This term
is required in order to maintain energy conservation.?>?¢ The equilibrium distribution function
fo is determined by the neoclassical dynamics and obeys

ofo
ot

(v”b +vE, +v4) - Vfo— b* - V(uB + —%)gf = Ci(fo, fo)- (14)

The lowest order solution of Eq.14 is a shifted Maxwellian consistent with plasma rotation:

fo= forr = (7“ 0)(271-} )3/2 ——[§(v||—Ui) +uB}’ (15)

where the parallel flow velocity U; is associated with the toroidal rotation by U; = Iw;/B

with w; the toroidal angular velocity and I the toroidal current, and n(r,#) is the ion density



mg U2 ed,

n(r,0) = N(r)e % T . The total equilibrium potential consists of two parts ®, = (®g) + .
Here, () denotes a flux surface average. The poloidally varying component ®, can be gen-
erated by the centrifugal force which drives a charge separation on a magnetic surface in
strongly rotating plasmas.3' Generally the radial potential (®o) is dominant. The equilibrium
radial electric field can be calculated from a first-principles based particle simulation of neo-

classical dynamics with important finite orbit effects,3%33

or obtained by direct experimental
measurement if available. For equilibrium toroidal plasmas, a shifted Maxwellian with either
model or experimental profiles (n(r,0)), T;(r) and w;(r) are prescribed for the ions. The
electron dynamics is described by the drift kinetic equation, neglecting the finite gyroradius
effect. The electron guiding center distribution is represented as fe = feo — (€d@/Tp) feo + She,
with turbulence potential 6¢ = ¢ — (¢). The equilibrium distribution fey satisfies the electron
version of Eq. 14 and can be approximated by a shifted Maxwellian containing a parallel flow,
similar to that for the ions. The second term represents the adiabatic electron response to the

potential fluctuation due to the fast electron motion. The nonadiabatic electron distribution

0h, is determined by

00h, S~ o 3 00he
5 T (v)b + vE, + Vg + Vg) - Vohe — b* - V(uB + E@()—i- —gb) a0,
¥ Ofe € 009 edo
= —’UE erO+b ( ¢) 8’U|| T ot fe0+(1)‘|b+’UE0+’UE+’Ud) -V ( Te ) feo+0é(5he). (16)

Again, the parallel veloc1ty nonlinearity is retained here for dh,.. At present the trapped
electron dynamics described by Eq. 16 is treated as a higher order correction to the adiabatic
response via a hybrid model®*® in the electrostatic limit. To include full electron dynamics,
we will use the split-weight scheme?®%7 to solve Eq. 16.

The electrostatic fluctuation potential is divided into a turbulence part plus a zonal flow
part: ¢ = 0¢+ poo With oo = (¢). This expression emphasises the critical role of turbulence-
generated zonal flow in determining the turbulence and the associated transport level. For
the turbulence potential, the gyrokinetic Poisson equation'® becomes

( - T> edp edp _ omi— (om)  onf) — (on{h))

T; T; ) o

. 7)




where 6n; = [ d*véf; is the ion fluctuation density of guiding centers and 6n{!) = [ d*véh, is
the nonadiabatic density of electrons. Because the zonal flow has a larger spatial scale than
the turbulence fluctuations, it is advantageous to solve for it separately in our simulations.

The generalized equation for zonal flow in shaped geometry is obtained as:

1dl%?W@@m_1d{g{ggmw_@ﬁwﬂw@@}%ég“cm» @¢%>’

Vidr “Var\ar|eCm T m Pl s
(18)
where V. = § dfdpJ. In Eq. 18 we use the Pade approximation I'g(b) = Io(b)e® ~ 1/(1 +b)
with I the modified Bessel function and b = (k p;)?, and <q~5> ~ (Ag{) The later approximation
is not well justified for low aspect ratio geometry. A generalized field solver such as in Ref.

38 may help to remove this approximation.

I1I. SIMULATION RESULTS

The general geometry model has been implemented based on GTC architecture. In this
section we present simulation results, including linear and nonlinear benchmarks, nonlocal
ITG instability, nonlinear turbulence spreading in a shaped plasma, and turbulence self-

regulation in a collisionless plasma.

A. Benchmarks

The general geometry model and simulation has been benchmarked, in the large aspect ratio
circular concentric geometry limit, against the original GTC code, which uses a simple analyti-
cal MHD equilibrium. For this benchmark, a corresponding numerical equilibrium is produced
for the general geometry GTC. The numerical equilibrium includes a small Shafranov shift
due to non-zero plasma beta and higher order (in the small inverse aspect ratio) corrections,
which are neglected in the analytical equilibrium. The benchmarks are carried out for ion
temperature gradient modes with a simplified adiabatic response for the electron dynamics.

O are used here: inverse aspect

The representative parameters for the familiar Cyclone case'
ratio a/ Ry = 0.358, ion temperature profile Ry/Ly = 6.92 exp{—[(r —0.5)/0.28]%}, T../T; = 1,

q = 0.854 + 2.184r2, and Lt /L, = 0.319.

10



The linear benchmark simulations are carried out in a radial domain from 0.2 to 0.8 (in
terms of normalized minor radius), and the ITG instability is measured at » = 0.5 where the
temperature gradient peaks. As illustrated in Fig.4, good agreement is obtained for the real
frequencies w,, while the growth rates v of the higher-n modes from the general geometry
GTC are slightly lower. The overall difference in frequency magnitude |w| is less than 5%.
The contour plots of the electrostatic potential perturbation on a poloidal plane show quite
similar eigenmode structures from the two simulations.

In the nonlinear ITG benchmark, the velocity space nonlinearity is included, which may
have considerable effect on turbulence dynamics.?® Flat marker temperature and density pro-
files are used in the general geometry GTC for the benchmarks only. The radial simulation
domain here is from r = 0.1 to r = 0.9. As shown in Fig.5, the nonlinear benchmark results
are in good agreement for both steady state heat flux and zonal flow over the entire radial
domain. It is also found that the self-generated zonal flow in I'TG turbulence has a spatial
scale of the order of the turbulence radial extension, with a roughly odd parity.

It is well known that electrostatic turbulence with adiabatic electrons does not drive
particle transport across the magnetic field lines. This result can be used as a rigorous test
for a complex simulation such as that developed in this paper. In the Fig. 6 the heat flux,
and the energy flux which is the sum of the heat flux and the convective energy flux carried
by the particle flux, vs time at r = 0.46 are plotted. The result that the energy flux and
heat flux are the same indicates that, indeed, no particle flux is produced in the simulation.
Moreover, the particle flux is driven nowhere over the entire radial domain (0.1 < r < 0.9) of

the global simulation.

B. Nonlocal ITG modes and global turbulence dynamics

Most previous linear analysis of microinstability has been carried out locally, neglecting the
radial variation of equilibrium quantities such as pressure gradient and pressure itself. While
GTC is a global toroidal code, in order to focus on the simplest problems involving shear effects
due to the radial variation of the pressure gradient, the plasma temperature and density were

assumed constant in the previous simulations. While such a treatment is well-motivated
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and useful in separating and clarifying fundamental physics issues, it does not realistically
capture the comprehensive global physics. In Fig. 7, we present an example of global ITG
instability from the simulation of the general geometry model, taking into account the radial
variation of temperature and density consistent with their gradient profiles. Compared to
the simulation with constant 7" and n, the ITG growth rate is considerably reduced, with no
significant change in the real frequency. Meanwhile, the contour plot of the electric potential
on a poloidal plane shows that the eigenmode structure is twisted in the poloidal direction.
We have also applied our new nonlinear I'TG simulation capability to a shaped toroidal
plasma, based on the DIII-D experiment with the same model profiles as in Fig. 7. First, we
examine the global turbulence evolution dynamics. The spatio-temporal evolution of the flux
surface averaged turbulence intensity is plotted in Fig. 8. The turbulence is driven by the
ion temperature gradient initially in the linearly unstable region (0.42 < r < 0.76), and then
fluctuations spread in both the inward and outward radial directions into the linearly stable
regions, leading to radially global turbulence and transport nonlocality. The fluctuation
intensity level in the stable regions is comparable to that in the original unstable regions.
Also presented are three snapshots of the electric potential contour plot on a poloidal plane,
which illustrate the dynamic, global evolution of turbulence. At an early time before the
nonlinear saturation, radially elongated streamers are generated in the linearly unstable region
with small extension into the linearly stable zone via linear toroidal coupling.*® Later on,
turbulence eddies are broken up by the self-generated E x B shearing flows (zonal flows)
during the nonlinear saturation phase. A fast radial expansion of the fluctuations, with
associated nonlinear toroidal coupling, immediately follows as the streamers are broken into
smaller radial scale (higher radial wave number) fluctuations by the zonal flows. At a later
time, they evolve into widely spread global turbulence — this establishes the coupling between

linearly stable and unstable regions.

C. Turbulence self-regulation in collisionless plasma

One of the key components in ITG turbulence is the zonal flow which regulates the turbulence

level locally.*! Figure 9 illustrates the mutual self-regulation between the zonal flow and the

12



turbulence. There exists a threshold for zonal flow excitation and a complex causal relation
between the turbulence and the zonal flow. In this collisionless simulation, the observed
oscillations in turbulence intensity and zonal flow energy can be generally attributed to the
nonlinear interplay process in which the turbulence drives the zonal flow which, in turn,
reduces the turbulence to a lower level. These oscillations should not be confused with the
faster oscillations associated with the geodesic acoustic modes (GAM). It should be pointed
out that the nonlinear oscillation shown here is different than that previously observed in Ref.
17, which is associated with the collisional damping of zonal flow.*?

When the zonal flows are artificially excluded, our simulation shows that turbulence in-
tensity does not oscillate after saturation. This clearly indicates that the oscillation behavior
results from nonlinear interplay between turbulence and zonal flows. Note that similar prop-
erties for the zonal flow and drift wave system have been demonstrated in simple analytical

4344 in which, however, only the collisional damping of zonal flow is explicitly assumed.

models
Here, the nonlinear oscillations shown in Fig. 9 occur with collisionless zonal flows. The ap-
parent nonlinear collisionless damping processes, which are responsible for the saturation of
zonal flows and the nonlinear oscillations shown in Fig. 9, are not theoretically understood yet.
The candidates may include the “tertiary instability”,%® generalized Kelvin-Helmholtz (GKH)
instability,’® and the energy transfer to parallel sound waves and turbulence via poloidally

47 etc.

asymmetric pressure perturbations,

Next, we attempt to clarify the possibility of energy transfer from zonal flow back to
turbulence. In a consistent simulation, it is hard to identify this process from the entire
nonlinear evolution of the system. Here we perform a carefully designed numerical experiment
to examine this process. The simulation uses the same parameters as in Fig. 8. We introduce
artificial zonal flows in the regions where the ITG mode is linearly (and also nonlinearly)
stable (r < 0.42 and r > 0.76). The artificial zonal flows are driven via adding in Eq. (18) a
nonzero axisysmmetric density fluctuation (d7;)/ny which is a certain (small) friction of that
in the unstable region (0.42 < r < 0.76). The spatio-temporal evolution of the turbulence
intensity is plotted in Fig. 10(a). Comparing to the previous simulation of Fig. 8, this shows

that, in the presence of artificial zonal flows, potential fluctuations are driven to grow in the

regions where the ITG is stable. This fluctuation growth in the early phase occurs before
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the propagation front of ITG turbulence from the unstable region reaches the stable region.
The temporal evolution of zonal flow energy and turbulence intensity at r = 0.33 (ITG stable
region) plotted in Fig. 10(b) shows two interesting properties: i) the turbulence components
are temporally delayed relative to the zonal flow which is artificially excited at the same time
as that in the unstable ITG region; ii) there is an amplitude threshold for zonal flow to excite
turbulence. Both are clear indications of a relation, that zonal flows can drive turbulence.
This can be compared with the zonal flow generation process in the ITG-unstable region: Fig.
10(c) shows that zonal flows are excited after the ITG driven turbulence grows to a certain
level. As mentioned before, this simulation uses artificially driven zonal flows to demonstrate
the possibility that zonal flows can drive turbulence, which would be difficult to identify in a
self-consistent simulation with complex nonlinear dynamics. It is also interesting to examine
the zonal flow generation process in the ITG stable region in the consistent simulation of Fig.
8. The result here is presented in Fig. 10(d), which shows that zonal flows are excited by
turbulence which has spread in.

After establishing the fact that zonal flows can drive turbulence, the next question is, how
efficiently can the energy be transfered from the zonal flows to the turbulence. Figure 11 shows
the temporal evolution of zonal flow energy < |V¢o|? >, and turbulence energy < |[Vig|? >.
It is found that the saturated turbulence energy is two orders of magnitude smaller than
that of the zonal flows. Note that, in Fig. 11, the second growth in turbulence energy,
starting at ¢ ~ 270, is caused by the spreading of the I'TG driven turbulence originating in
the region 0.42 < r < 0.76. Our numerical experiments also show that the above observations
are not sensitive to the strength and the profile shape of the artificially excited zonal flows.
In contrast, the zonal flow generation by the turbulence in the I'TG unstable region is very
efficient in the sense that, during their generation process, zonal flows extract a large amount
of energy from the turbulence components. Therefore, our simulation results suggest that
zonal flows can drive turbulence. However, this process is too weak to be an effective zonal

flow saturation mechanism.
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IV. SUMMARY

We have presented a generalized model which incorporates important realism of tokamak
experiments into nonlinear gyrokinetic simulations of plasma turbulence. These include a
systematic treatment of plasma rotation and equilibrium E x B flow, realistic plasma profiles
and corresponding magnetohydrodynamic (MHD) equilibria. The general geometry simula-
tion capability has been developed with following favorable features: i) By rescaling the radial
coordinate, the grid size in the perpendicular direction is correlated with the local gyroradius
which, varying substantially from the core to the edge, defines the spatial scale of turbulence
at different locations. ii) Gyrokinetic transformations of potential and charge density between
particle and guiding center positions are calculated with a finite ratio (By/B) correction which
is a significant geometry effect on the turbulence calculation, particularly for spherical torus
devices. iii) The applied equilibrium E x B flow with the spatial scale of the plasma minor
radius, which is believed to play an important role in determining the turbulence level, is
calculated from our first-principles based particle simulation of global neoclassical dynamics
with important finite orbit effects. Working with a symmetry coordinate system, we can con-
struct a relatively regular mesh in real space for strongly shaped toroidal plasmas. This also
facilitates straightforward visualization. In the large aspect ratio circular concentric geome-
try limit, cross benchmarks of the linear and nonlinear characteristics, such as real frequency,
growth rate, steady-state heat flux and zonal flow amplitude, of ITG turbulence have been
carried out to validate the general geometry model and simulation.

Our nonlinear simulations have been applied to a DIII-D shaped plasma to examine both
local and nonlocal phenomena of ITG turbulence. The dynamic evolution from the radially
elongated streamers generated by localized instability, to short radial scale fluctuations due
to the shearing decorrelation of the zonal flows, and then to radially global turbulence via
turbulence spreading into linearly unstable regions, has been demonstrated. The coupling
established between linearly stable and unstable regions via turbulence spreading, as shown
in our simulation, may explain some experimental reports of the existence of finite density
fluctuations and anomalous heat transport in the linearly stable region inside an internal

transport barrier.*® With regard to the nonlinear interplay between zonal flow and turbu-
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lence, our numerical experiments suggest that the zonal flows can drive turbulence. However,
the associated energy coupling is too weak to provide sufficient zonal flow damping to be
responsible for zonal flow saturation and the bursting behavior in the fluctuations observed

in our collisionless simulations.
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